In industrial applications, the three 3D vision technologies of structured light, ToF and multi-vision stereo vision have their own advantages. The measurement resolution is high, but the requirements for the computing processing unit are high, and the structure and cost are also very high. In the future, which technology will eventually occupy a dominant position, but also depends on the specific application areas and application requirements, the most likely situation is a combination of the two technologies.

Since the infrared component of outdoor sunlight, the color of the object to be measured, surface roughness and reflectivity can have some influence on ToF ranging, Habersham has optimized the optical lens, structure and algorithm from the early stage of product design to greatly reduce the influence of these factors on ToF ranging.

Habersham uses a higher resolution ToF CMOS chip and optimizes the IR imaging lens, IR illumination system and compensation algorithm to maximize the detection distance of LIDAR while taking into account the field of view, resolution and accuracy.

Compared with traditional mechanical scanning and micro-MEMS micro-mirror scanning LIDAR technology, Habersham’s solid-state LIDAR products do not have any mechanical moving parts inside, and with its high-strength aerospace aluminum housing, it can meet various harsh usage environments such as high vibration and high impact, which greatly improves the reliability of LIDAR.

The six-dimensional force sensor is a high-performance mechanical sensor based on the strain principle, which can measure the force and moment in XYZ directions in real time. Unlike optical and capacitive technologies, the sensor has excellent anti-interference capability and shock overload resistance, and can be applied in complex electromagnetic environments and strong vibration occasions such as industry.

The sensor will be mainly applied in the field of industrial robots to give industrial robots the same force sensing feedback as human beings, enabling industrial robots to perform complex and precise operations that could only be done by humans in the past. The main target applications are as follows: 1) flexible precision transfer of industrial robots; 2) precision grinding of industrial robots; 3) dragging and teaching of industrial robots. In addition, the sensor can also be applied to wind tunnel testing, medical rehabilitation, collision detection, robot balance control and dynamics measurement applications.

The first is the laser class, whether to meet the safety of the human eye, that is, Class One class, this is very important.

The second is the farthest detection distance, usually in the back of the note it is in the case of how much reflectivity to get such a detection distance. For example, the object in the case of 10% reflectivity and 80% reflectivity, its maximum detection distance is not the same.

The third is the accuracy of distance measurement, which is also a relatively important amount, especially when doing some high precision maps, mapping, the accuracy of the distance is quite important.

The fourth and fifth is the field of view, including the horizontal field of view and vertical market angle. In this field of view, how big is the point cloud resolution of LiDAR.

The sixth is the point cloud density. Here we should emphasize that no matter what kind of LIDAR, we must understand how the point cloud density is, because sometimes its angular resolution and or field of view are deceptive, but its point density is not deceptive, so we must care how much the point cloud density is, which is sometimes the biggest constraint of radar performance.

The seventh is the frame rate.

The eighth is the power consumption, some scenarios are still more concerned, for example, the UAV carries the radar, if the battery power consumption is too large, the working time of this radar will be limited.

The above eight parameters are the core parameters of the LIDAR, you can start from these aspects when buying radar, to do some comparison.

1、Lidar uses a non-contact distance measurement method.

2, lidar is a kind of active detection, this kind of detection can be conducive to such a work in the night.

3, lidar has a relatively high angular resolution and distance resolution, and can detect more kinds of objects.

4, lidar is more sensitive to the reflectivity information of the target, which can make lidar can go for lane line identification, or signage identification when making high-definition maps.

5、Lidar uses optical parts, so it is not quite the same as traditional microwave radar, and its volume can be made very small, which is also an advantage of it.

Sensor (English name: transducer / sensor) is a detection device, can feel the measured information, and can detect the information felt, according to certain laws transformed into electrical signals or other required forms of information output, to meet the requirements of information transmission, processing, storage, display, recording and control. It is the primary link to realize automatic detection and automatic control.

An encoder is a device that compiles and converts a signal (such as a bit stream) or data into a form of signal that can be used for communication, transmission and storage. An encoder converts angular or linear displacement into an electrical signal, the former being called a code disc and the latter a code scale.

An encoder is a rotary sensor that converts a rotational displacement into a series of digital pulses that can be used to control angular displacement, or, if the encoder is combined with a gear bar or screw screw, it can also be used to measure linear displacement.

Sensitivity: The ratio of the output increment to the added load increment. Usually the rated output mV per input voltage of 1 V. When our products are matched with other companies’ products, the sensitivity factor must be the same.

Nonlinearity: This is a parameter that characterizes the degree of accuracy of the correspondence between the voltage signal output by this sensor and the load.

Repeatability: Repeatability characterizes the sensor in the same load repeatedly applied under the same conditions, whether the output value can repeat the same, this characteristic is more important and more reflective of the quality of the sensor. The national standard on the repeatability of the error of the expression: repeatability error can be measured simultaneously with the nonlinearity. Repeatability error (R) of the sensor is calculated according to the following formula: R = ΔθR/θn × 100%. ΔθR – the maximum difference between the actual output signal values of three measurements at the same test point (mv)

Modern sensors vary widely in principle and structure, so how to reasonably choose the sensor according to the specific measurement purpose, measurement object and measurement environment is the first problem to be solved when measuring a certain amount. When the sensor is determined, the matching measurement method and measuring equipment can also be determined. The success or failure of the measurement results, to a large extent, depends on whether the choice of sensors is reasonable.

1, according to the measurement object and measurement environment to determine the type of sensor

To carry out – a specific measurement, the first thing to consider what principle of the sensor, which requires analysis of a number of factors to determine. Because, even if the measurement of the same physical quantity, there are a variety of principles of the sensor can be used, which is a more appropriate principle of the sensor, it is necessary to consider the following specific issues according to the characteristics of the measured and the conditions of use of the sensor: the size of the range; the measured position of the sensor volume requirements; the measurement method for contact or non-contact; the signal lead method, wire or non-contact measurement; sensor The source of the sensor, domestic or imported, whether the price can be afforded, or self-developed.

After considering the above issues can determine what type of sensor to use, and then consider the specific performance indicators of the sensor.

2, the choice of sensitivity

Usually, within the linear range of the sensor, the higher the sensitivity of the sensor, the better. Because only when the sensitivity is high, the value of the output signal corresponding to the measured change is relatively large, which is conducive to signal processing. However, it should be noted that the high sensitivity of the sensor, the external noise unrelated to the measured is also easy to mix in, will also be amplified by the amplification system, affecting the measurement accuracy. Therefore, the sensor itself should be required to have a high signal-to-noise ratio, as far as possible to reduce the introduction of plant disturbance signal from the outside.

The sensitivity of the sensor is directional. When the measured is a one-way quantity, and its directional requirements are high, the sensor should choose other directional sensitivity is small; if the measured is a multi-dimensional vector, the sensor is required to cross the sensitivity of the smaller the better.

3, frequency response characteristics

Frequency response characteristics of the sensor determines the measured frequency range, must be within the allowable frequency range to maintain undistorted measurement conditions, in fact, the response of the sensor always – a certain delay, hope that the shorter the delay time the better.

The frequency response of the sensor is high, the measured signal frequency range is wide, and due to the influence of structural characteristics, the mechanical system inertia is larger, because there is a low frequency sensor can be measured signal frequency is lower.

In the dynamic measurement, should be based on the characteristics of the signal (steady-state, transient, random, etc.) response characteristics, so as not to produce over-fire error.

4, linear range

The linear range of the sensor is the range where the output is proportional to the input. In theory, within this range, the sensitivity remains constant. The wider the linear range of the sensor, the larger the range, and can ensure a certain measurement accuracy. In the selection of sensors, when the type of sensor is determined after the first look at the range to meet the requirements.

But in fact, no sensor can guarantee absolute linearity, its linearity is also relative. When the required measurement accuracy is relatively low, within a certain range, the non-linear error can be smaller sensor approximation as linear, which will bring great convenience to the measurement.


La capacità del sensore di mantenere le sue prestazioni costanti dopo un periodo di tempo è chiamata stabilità. Oltre alla struttura del sensore stesso, i fattori che influenzano la stabilità a lungo termine del sensore sono principalmente l'ambiente in cui viene utilizzato il sensore. Pertanto, affinché il sensore abbia una buona stabilità, il sensore deve avere una forte adattabilità ambientale.

Prima di selezionare un sensore, è necessario studiare l'ambiente in cui viene utilizzato e selezionare il sensore appropriato in base all'ambiente di utilizzo specifico o adottare le misure appropriate per ridurre l'impatto ambientale.

Esiste un indicatore quantitativo della stabilità del sensore e, dopo aver superato la vita utile, deve essere ricalibrato prima dell'uso per determinare se le prestazioni del sensore sono cambiate.

In alcuni casi, il sensore deve essere utilizzato per lunghi periodi di tempo, non può essere facilmente sostituito o calibrato e la stabilità della selezione del sensore è più rigorosa per resistere a test a lungo termine.

6. Precisione

L'accuratezza è un importante indice di prestazione del sensore e un collegamento importante che influenza l'accuratezza della misurazione dell'intero sistema di misurazione. Maggiore è l'accuratezza del sensore, più costoso è, pertanto l'accuratezza del sensore può soddisfare i requisiti di precisione dell'intero sistema di misurazione e non è necessario scegliere troppo in alto. In questo modo, è possibile scegliere sensori più economici e semplici tra molti sensori che soddisfano gli stessi obiettivi di misurazione.

Se lo scopo della misurazione è l'analisi qualitativa, è possibile utilizzare un sensore ad alta ripetibilità e non è necessario selezionare un sensore ad alta precisione assoluta; Se si tratta di un'analisi quantitativa, è necessario ottenere misurazioni accurate e il livello di precisione necessario per soddisfare i requisiti del sensore.

Per alcune occasioni speciali, non è possibile selezionare il sensore giusto ed è necessario progettare e produrre il sensore da soli. Le prestazioni dei sensori domestici dovrebbero soddisfare i requisiti per l'uso.

1. Linearità

L'ingresso e l'uscita del sensore sono statici, hanno una certa relazione, ma sono indipendenti dal tempo e non mostrano una relazione lineare, ma il grado in cui la curva si discosta dalla linea adattata.

2. Sensibilità

La sensibilità è una definizione importante in fisica e un indicatore molto importante di uno strumento, qui si riferisce al rapporto di incremento tra due segnali di ingresso.

3. Ripetibilità

Questa caratteristica statica si basa sul cambiamento della quantità di input nella stessa direzione, che produce le caratteristiche della sua curva caratteristica.

4. Risoluzione

Questo è anche l'ingresso minimo del sensore. Dopo aver immesso questo valore, il sensore ha un'uscita al di sotto della quale il sensore rimane invariato e questa uscita viene utilizzata anche per definire la tensione di soglia.

5, isteresi

La curva caratteristica del sensore, nella corsa positiva della stessa quantità di ingresso e nella sua corsa inversa, le curve caratteristiche risultanti non si sovrappongono completamente, questo fenomeno è chiamato isteresi.

6. Drift

Le ragioni della deriva sono molteplici, possono essere i parametri del prodotto, possono essere problemi come la temperatura o l'umidità, le prestazioni specifiche del volume di ingresso rimangono invariate e il volume di uscita cambia nel tempo.

I sensori svolgono un ruolo importante nella produzione industriale: possono convertire vari segnali che gli umani non possono interpretare in informazioni che le persone possono leggere, il che porta grande comodità alla produzione e alla vita delle persone.

Un sensore è un dispositivo di rilevamento che può percepire le informazioni misurate e può percepire le informazioni e convertirle in un segnale elettrico o altra forma desiderata di uscita delle informazioni secondo una certa legge per soddisfare i requisiti di trasmissione, elaborazione, memorizzazione, visualizzazione, registrazione e controllo delle informazioni. Comunemente usati sono sensori di temperatura, sensori di umidità, sensori di pressione, sensori di spostamento, sensori di flusso, sensori di livello, sensori di forza, sensori di accelerazione, sensori di coppia, sensori elettrici, sensori magnetici, sensori fotoelettrici, sensori di potenziale, sensori di carica, sensori a semiconduttore, ecc.